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Abstract. We present a model of spheres moving in a high-dimensional compact space. We
relate it to a mixed matrix model with a O(N) invariant model plus aP(N) invariant perturbation.
We then study the low pressure regime by performing a diagrammatic expansion of this matrix
model. Finally, we show the results from numerical simulations and we present evidence for a
glassy regime at high pressures.

Glassy systems can be characterized as out-of-equilibrium systems in which the relaxation
is slower than the experimental time-scale [1]. The slowness of the dynamics is due to the
complexity of the energy (or free-energy) landscape, which may contain a combination of
barriers, bottlenecks and even flat directions. In the case ofspin glasses, the complexity
of the landscape is induced by thefrustration in the spin configurations, which in turn
is a consequence of the (quenched) disorder in the couplings. In structural glasses the
ruggedness of the landscape does not necessarily come from a quenched disorder, but is a
consequence of the geometrical constraints for the motion; the disorder isself-induced.

Despite this difference in the origin of disorder, both spin and structural glasses share
some common features such as a long-term memory going back to the time when the
system was quenched to low temperature. These ‘aging’ effects can be studied analytically
in simple mean-field spin-glass models [2] and they are qualitatively very similar to the
aging effects found in true experimental spin glasses.

Recently, there has been considerable success in constructing the ‘structural’ counterpart
of such simple spin-glass models, i.e. mean-field systems without quenched disorder having
a dynamic phase transition into a glassy phase. These models include spin models [4–7],
particles on a hypercubic cell [8] and a field theory with quasi-random interactions [9]. In
all but the latter model, the glassy behaviour is a consequence of the discreteness of the
variables: a continuous version of them behaves like a ‘liquid’ at all temperatures.

The purpose of this paper is to present a model of hard-spheres [3] in a high-dimensional
(off-lattice) compactspace. We obtain analytical results for the low-pressure regime, and
numerical evidence for a glassy transition. We simulate the constant-pressure dynamics in
the high-pressure phase, and study the ergodic properties in that case.

The model is related to (but different from) ordinary spheres in a flat high-dimensional
space [10]. For the latter, only the second term in the virial expansion in terms of the
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density survives in the largeD (D = dimension) limit [11, 10], while in the present model
the pressure is scaled withD so as to give non-zero virial coefficients for all powers of the
density. Unlike the flat case in our model each sphere interacts with many (orderD) others
yielding on the one hand a richer virial expansion and on the other hand a problem that can
be treated with saddle-point (mean-field) techniques.

To the best of our knowledge, there is neither analytical nor numerical evidence for a
glassy regime in the flat model for high dimensionalities. The present model is easier to
simulate and thus allows for a numerical detection of a departure from a low pressure—
liquid—behaviour.

1. The model

We consider a set ofN particles of positionsSa(a = 1, . . . , N) constrained to be on a
D-dimensional sphere:

1

D

D∑
i=1

(Sa
i )2 = 1 ∀a . (1)

The ‘distance’ between two particles on the sphere is

qab

√
D

= 1

D

D∑
i=1

Sa
i Sb

i = cosθab ∀a < b (2)

and the hard-sphere condition reads

−Q < qab < Q ∀a < b (3)

whereQ is the ‘size’ of the particles. We chooseQ of order 1 so that the angle between
particlesθab on the sphere is close to 90◦ (cf equations (1), (2)). This yields a non-trivial
behaviour in the high-dimensional limit with the particle number scaling with the dimension
asN = ρD and the ‘density’ρ of order 1. For every particle there is another in the antipodes
of the sphere. Equivalently, we can say that we identify opposite points on the sphere. In
that case, the manifold on which the particles move is no longer theD-dimensional sphere
but the projective planeRP(D).

An alternative normalization is to impose the minimal angle between any two particles
θmin to be fixed and different from 90◦ in the limit N → ∞. In that case,Q is of order√

D andN has to grow exponentially withD to have a non-trivial behaviour [3]. Spheres
in a flat high-dimensional space are recovered in the limitθmin → 0. We do not consider
here this alternative normalization.

In order to study a constant-pressure situation, one can consider a variable radius of the
sphere on which the particles move, and a coupling term between the radius of that sphere
and the pressure. We shall instead follow the equivalent procedure of keeping the radius of
the spherical space fixed, and considering the particle sizeQ as a dynamic variable. The
partition function reads

Z[ρ, P ] =
∫

dQ exp[−N2PQ]
∫ N∏

a=1

dSa δ(S2
a − D)

∏
a<b

θ(Q
√

D − |Sa · Sb|) . (4)

The coupling with the pressureP is provided by the factor exp[−N2PQ] in the partition
function. Note that any other function ofQ just amounts to a (nonlinear) rescaling of the
pressure.
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In section 3 we shall study the response of the density of the system to a space-dependent
field. In an ordinary flat space one applies a field with a strength that varies spatially as
h(t) cos(kx) and then measures the corresponding space Fourier component of the density.
Here we shall apply a field that pushes the particles towards the direction(1, 1, . . . , 1):

h(t)
∑
ia

si
a (5)

and we shall then measure the corresponding density response

m(t) = 1

ND

〈 ∑
ia

si
a(t)

〉
. (6)

Finally, let us remark that one can define a shear viscosity for this model by subjecting
the system to a tangential force that varies with the ‘latitude’ from the equator of the
spherical space, and measuring the corresponding average velocities. We do not do so here.

2. Analytical calculations

In the thermodynamical limit, the free-energy depends only on the pressureP and on the
densityρ = N/D. Introducing the entropy

S(qab) = log
∫ N∏

a=1

dSaδ(S
2
a − D)

∏
a<b

δ

(
qab − 1√

D
|Sa · Sb|

)
(7)

of all positions corresponding to a given set of overlapsqab (equation (2)),Z[ρ, P ] may
be rewritten as the partition function of the following matrix model:

Z[ρ, P ] =
∫

dQ exp[−N2PQ]
∫ ∏

a<b

[dqab θ(Q − |qab|)] eS(qab) . (8)

The origin of the difficulty arising in the computation of the partition function is now clearer.
Whereas any rotation of the matrixqab in the (N × N )-dimensional space of the particle
overlaps leaves the entropyS(qab) unchanged, the hard-sphere condition is only invariant
under the group of permutationsP(N) of the particles. As a consequence, the action in (8)
does not depend only upon the eigenvalues ofqab and the angular variables cannot be
integrated out to obtain a solvable model in the large-N limit [15]. We shall now see that
this difficulty does not prevent us from estimating the full diagrammatic expansion of the
free energy which is expected to be valid in the low-P regime.

2.1. The diagrammatic expansion

Let us now consider a generic matrix modelMab whose action includes two different
terms. The first one,S1(M), is O(N) invariant. The second one,

∑
a,b S2(Mab), breaks the

rotational symmetry but is invariant under a permutation ofP(N). Both partsS1 and S2

may be expanded as integer series of their argument. Assuming that the mean value ofMab

is equal to zero, the first terms are quadratic inMab while the following ones contain all
kinds of even vertices compatible with the O(N) andP(N) symmetries:

S1(M) = r1

2

∑
a,b

M2
ab + g1

N

∑
a,b,c,d

MabMbcMcdMda + O(M6) (9)

S2(M) = r2

2

∑
a,b

M2
ab + g2

∑
a,b

M4
ab + O(M6) (10)
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where the normalization factor in (9) ensures that the limitN → ∞ is well defined. For
simplicity we shall consider only quartic interaction terms; the extension of what follows
to the general case is immediate. We therefore end up with the computation of

Y =
∫ ∏

a,b

dMab exp

(
− r

2

∑
a,b

M2
ab − g1

N

∑
a,b,c,d

MabMbcMcdMda − g2

∑
a,b

M4
ab

)
(11)

wherer = r1 + r2. Wheng2 = 0, Y may be expanded in powers ofg1 and only planar
diagrams survive in the large-N limit [15]. If we now consider the diagrams coming from
the g2 vertex, the self-energy will include some new contributions which may be separated
in two groups:

• some diagrams are topologically equivalent to the ones arising in theg2 = 0
expansion but the propagators between theg1 vertices are now ‘dressed’ with theg2

interaction: such diagrams may be simply obtained by the addition of a self-energy
term r2 + σ2

∑
a,b M2

ab in S1(M), where the value ofσ2 will have to be fixed in a
self-consistent way.

• the remaining ‘mixed’ diagrams include interactingg1 and g2 vertices: the simplest
representative of this class is

g1g2

N

∑
a,b,c,d,e,f

〈MabMbcMcdMdaM
4
ef 〉 (12)

where〈·〉 denotes the Gaussian bare measure over the matrix elements. Once Wick’s
contractions have been done in the inner loops of such diagrams, the number of free
indices running inside the loops is strictly lower than the power of the 1/N factor.
Following the lines of [5], it seems reasonable to conjecture that this result still holds
for all ‘mixed’ diagrams. Therefore, these diagram should not contribute in the large-N

limit. Although we have not been able to prove this conjecture, we believe it is exact.

The S2 term turns out to renormalize the self-energy of the O(N) invariant model by an
additional factorσ2. As a consequence the average squared value〈M2〉 equals the full
propagator of theS1 theory,〈M2〉1(r + σ2) with the bare massr + σ2.

If we now considerS1(M) as a perturbation of theP(N) invariant actionS2, the above
reasoning will still hold and the full diagrammatic expansion is identical to the one of the
S2 model with a new contributionσ1 to the self-energy. Thus, the mean squared value of
the matrix element equals〈M2〉2(r + σ1) where〈·〉2 denotes the average value with theS2

action and the bare massr + σ1. Furthermore, it is equal to the inverse of the renormalized
mass. The self-consistency equations thatσ1 andσ2 fulfil are therefore

〈M2〉1(r + σ2) = 〈M2〉2(r + σ1) = 1

r + σ1 + σ2
. (13)

2.2. Resummation and introduction of the disorder

We shall now see that the above diagrammatic expansion may be obtained in a compact
form by introducing the new partition function (on the same lines as in [5])

Y [U ] =
∫ ∏

a,b

dMab exp

(
− r

2

∑
a,b

M2
ab − g1

N

∑
a,b,c,d

MabMbcMcdMda

−g2

∑
a,b

(∑
c,d

Uab,cdMcd

)4)
(14)
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where U is a N2 × N2 orthogonal matrix. The important point is that the annealed
partition functionY [U ], averaged over all orthogonal matricesU , has the same diagrammatic
expansion as the originalY (11) which corresponds to the particular choiceUab,cd = δacδbd .
Let us defineTab = ∑

c,d Uab,cdMcd and its Lagrange multiplier̂Tab to rewrite

Y [U ] =
∫ ∏

a,b

dMab dTab dT̂ab exp

(
− r

2

∑
a,b

M2
ab − g1

N

∑
a,b,c,d

MabMbcMcdMda − g2

∑
a,b

T 4
ab

+
∑
a,b

T̂abTab −
∑

a,b,c,d

T̂abUab,cdMcd

)
. (15)

If we now averageY [U ] over all possible choices of the orthogonal matrixU , we obtain [5]

Y [U ] =
∫ ∏

a,b

dMab dTab dT̂ab exp

(
− r

2

∑
a,b

M2
ab − g1

N

∑
a,b,c,d

MabMbcMcdMda − g2

∑
a,b

T 4
ab

+
∑
a,b

T̂abTab + G

( ∑
a,b

T̂ 2
ab

∑
c,d

M2
cd

))
(16)

where

G(t) = log
∫ 1

−1
dx(1 − x2)N/2eiNx

√
t . (17)

Introducing the order parameters1
N2

∑
a,b T̂ 2

ab and λ = 1
N2

∑
a,b M2

ab and their respective
Lagrange multipliersτ and λ, we see from the above expression (16) forY [U ] that the
integral over theT̂ variables is purely Gaussian and may be analytically performed. TheM

andT variables, whose vertices are respectively O(N) andP(N) invariant, are thus coupled
only through an additive renormalization of their masses byλ andτ respectively. Therefore,
the introduction of the disorder and the annealed average we have carried out has permitted
us to find another partition function which must be equal to the whole resummation of
the diagrammatic expansion ofY exposed in the previous paragraph, provided that (13) is
fulfilled, that is

〈M2〉(λ) = 〈T 2〉(τ ) = 1

τ + λ
. (18)

It is possible that the disordered model also yields information about the high pressure
phase.

2.3. The hard-spheres free-energy

Let us now apply the previous results to our original problem of interacting hard spheres.
Starting from (8), we introduce the orthogonal matrixU

Z[U, ρ, P ] =
∫

dQ exp[−N2PQ]

×
∫ N∏

a=1

dSaδ(S
2
a − D)

∏
a<b

θ

(
Q

√
D −

∣∣∣∣ ∑
c<d

Uab,cdSc · Sd

∣∣∣∣) (19)

and average over all possible choices of such matrices to find

Z[U, ρ, Q] =
∫

dQ dλ dτ e−N2F(λ,τ,Q,ρ,P ) (20)

where

F(λ, τ, Q, ρ, P ) = λFp(λ, ρ) + 1
2τFs(τ, Q) − 1

4 log(τ + λ) + QP (21)
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and the two free energies corresponding to the O(N × N) and P(N) interactions,
respectively, equal

Fp(λ, ρ) = lim
N,D→∞

− 1

λN2
log

∫ N∏
a=1

dSa δ(S2
a − D) exp

(
− λ

4D

∑
a 6=b

(Sa · Sb)
2

)
(22)

at fixed densityρ = N/D and

Fs(τ, Q) = − 1

τ
log

∫ Q

−Q

dx√
2π

exp
(
−τ

2
x2

)
. (23)

The saddle-point equations with respect toτ andλ read〈
(Sa · Sb)

2

D

〉
p

= 〈x2〉s = 1

τ + λ
(24)

where the measures〈·〉p and〈·〉s correspond to the free energies (22) and (23), respectively.
Defining explicitly the latter,

P(x) = exp(−τx2/2)∫ Q

−Q
dy exp(−τy2/2)

(25)

the saddle point overQ reads

P(Q) = P . (26)

InterpretingP(x) as the probability distribution of the overlap between two spheres, identity
(26) expresses the usual relation between the pressure and the value of the pair correlation
function at contact in hard-spheres systems [12]. Note that the low pressure theory therefore
predicts a (truncated) Gaussian distribution of the overlaps between the spheres while the
sign ofτ appearing in (25) may become negative at sufficiently high pressures. This happens
when many spheres are touching themselves. The probabilityP of their mutual overlap
being equal toQ (or −Q) it then becomes higher than the probabilityP(x = 0) of finding
‘orthogonal’ spheres.

At low Q, the pressure of this solution diverges as

P ∝ 1

Q − Qmin
(27)

whereQmin = √
1 − 1/ρ.

3. Numerical simulations—the glass transition

In order to locate a possible transition, we have performed simulations with Monte Carlo
dynamics. The simulation starts from a configuration without overlaps between particles,
and a large value ofQ (corresponding to small particles or, equivalently, low density).
The particles are moved randomly, and the changes are accepted if they do not violate the
hard-sphere condition.

In a first set of simulations (corresponding to infinite pressure in the transient), every
1t steps an attempt is made to enlarge all the particles by an amountδQ : Q → Q − δQ.
If the change in size does not generate an overlap, then it is accepted. When a given target
valueQtarget is reached, the system evolves at fixedQ = Qtarget. Different annealing speeds
correspond, in this set of simulations, to smaller proposed changes inQtarget and larger
intervals between changes ofQtarget.
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Figure 1. Mean squared distance
∑

a 6=b q2
ab/N(N − 1) between particles versus particle size

Q2 for D = 64, N = 128. Four different annealing times.

A second set of simulations was done at constant pressure as follows: the particles are
moved at random as before, never accepting overlaps between them. After every motion
an attempt is made to change the particle size. If the change generates an overlap, then
it is rejected. If it does not generate an overlap, then it is accepted with the Monte Carlo
probability associated to an energyN2PQ (cf equation (4)). At not too high densities, we
have observed that the number of sweeps needed to thermalize roughly scales asN2.

We have done simulations forρ = 2 andD = 4, 8, 16, 32 and 64. For dimensions
up to 16, at high densities the system goes to a regular structure (see below). We have
carried out larger simulations forD = 32 and 64. Figure 1 shows, forD = 64, the
plot of average interparticle ‘squared distance’

∑
a 6=b q2

ab/N(N − 1) versus particle sizeQ
obtained with the infinite-pressure algorithm for four different annealing times (each one
half of the previous, the longest run consisting of about 107 sweeps), together with the
analytical curve. One can see the departure of the numerical points from the low-density
solution at a value ofQ < 1. The dependence on the annealing velocity becomes more
important at higher densities. However, we have checked that the correction due to the
finite annealing time vanishes as the annealing time to a power close to−0.5. The limit of
infinitely slow annealing yields a value that is different at high densities from the analytic
computation for the liquid phase.

More detailed information is obtained by plotting the histogram of normalized relative
distancesqab/Q for different particle sizesQ (figure 2). As the particle size is increased
the typical distances become more and more concentrated near the minimal distanceQ, i.e.
most spheres are almost touching.

The low-density solution of section 2 predicts a Gaussian form for this distribution in
the low-density phase. By comparing this prediction with the numerical data we can see at
which density the low-density solution breaks down.

In figure 3 we plot the coefficient of the Gaussian obtained by doing a numerical fit of
the data versus the analytical prediction of the previous section. The agreement is good up
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Figure 2. Histogram ofqab versusq/Q for Q of 0.791 960 (lowest curve atq/Q = 1),
0.862 670, 0.919 239 and 1.060 66 (highest curve atq/Q = 1).

Figure 3. τ̂ versusQ (full curve) analytical result for the low-density phase. Coefficient in the
Gaussian fit of the histogram ofqab from the simulation. In the inset the error corresponding
to the Gaussian fit.
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Figure 4. Sphere diameterQ as a function of the pressurep. Diamonds: pressure estimated
from the histogramP(qab) for D = 64 using the longest run. Crosses: annealing in the pressure
for D = 32. Full curve: low-density analytical calculation.

to a value ofQ around 0.84. A further confirmation of the transition density is obtained
by computing the error in the Gaussian fit. The inset of figure 3 shows that the error is
negligible forQ > 0.84 and starts growing for smaller values ofQ (corresponding to the
high-density phase). This means that, forQ < 0.84, the distributionP(qab) is definitely
not a Gaussian.

With the constant pressure algorithm we have performed a slow annealing in pressure.
The result ofQ versusP for D = 32, ρ = 2 (the volume versus pressure curve for this
model) is shown in figure 4. Again, the analytical low-pressure curve breaks away from
the numerical one at a value ofQ consistent with the previous one. In this figure we
also show the pressure as obtained from the probability ofqab at qab = Q (see [12]). An
asymptotic form of the pressure (27) describes well the data for the longest run at low
Q and D = 64, the values of the constant factorA ≡ P(Q − Qmin) and Qmin being 0.4
and 0.76, respectively. These values are close but different from the theoretical low density
prediction ofQmin = 1/

√
2.

From these simulations we see that there is some sort of dynamical freezing at large
pressures. In order to try to understand the nature of the dynamical high-pressure regime,
we have performed a numerical ‘aging experiment’ atP = 8.4 (D = 32, ρ = 2). We
perform a rapid ‘quench’ in pressure down toP = 8.4 in the presence of a constant field
(h = 30) as in equation (5). The conjugate density (6) tends to stabilize after a transient.
We now cut the field at different timestw, and observe the decay of the density response (6)
for further timest . The results are shown in figure 5, for three differenttw, together with
(in the inset) the evolution of the density response for constant field.

We see that the remnant density response has a very slow decay after the field has been
cut off. The spheres are very blocked in a position that was generated under the field, and
have difficulty in rearranging themselves. The system in which the field has been cut off
first has the fastest decay of the density response. The question now is whether the system
has ‘true’ or ‘weak’ ergodicity breaking, as we shall discuss below.
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Figure 5. Density response in the aging simulationm(t + tw) versust , log–linear plot. The
waiting times aretw = 25× 104, 63× 104 and 102× 104. Inset: density response for constant
field; the vertical range is from 0.15 up to 0.20. The time axis is the same for both graphs.

4. Discussion

Let us now discuss the physics of this model, in view of the results we have obtained and
of what we know from spin-glass dynamics. First of all we must discuss possible finite-size
effects. A finite system cannot have a sharp transition; at finite pressure it will eventually
equilibrate, and thus cannot have a glassy regime either. We have simulated the system with
D = 16, ρ = 2 and found evidence of equilibration: the distribution of overlaps tends to
have a few peaks, suggesting a fall into a ‘crystalline’ state. Though we have not performed
a detailed analysis of the dependence of the equilibration time uponD and N , we know
that it rapidly increases with both parameters. For the larger sizes we have presented (e.g.
D = 32, 64,ρ = 2) we have observed no evidence for the formation of a crystalline state,
the resulting functionP(qab) being smooth.

Let us then discuss what is the behaviour of the model for large but finite times (as
compared to the system size). The first question that arises is what is the role of the
annealing procedure or, rather, what would it be in a system withN → ∞. In order
to distinguish the dependence upon different annealing velocities from aging effects, we
shall consider first the asymptotic value ofone-timequantities (distribution of interparticle
distances, density, etc). Let us be more precise and consider the following procedure: we
start with the system at low density and we increase the pressure with a given velocity up
to a given final pressure. After that we let the system relax at constant pressure for a long
subsequent time. The question is now whether the asymptotic value of, say, the distribution
of interparticle distances depends upon the annealing velocity. Our data are compatible
with the assumption that there is no such dependence. In this respect this model behaves
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as real spin glasses which are different from ordinary glasses in that the large-time limit of
one-time quantities are independent of the annealing procedure [16].

In the high-pressure regime there is obviously some form of slow dynamics (see
figure 5). The question now arises as to whether we are in the presence of ‘strong’ or
(as is the case in spin glasses) ‘weak’ ergodicity breaking. In the first case, the system
remains confined in a small region of phase space and remembers forever the conditions in
which it was prepared. In the ‘weak’ ergodicity braking scenario, there is no confinement
within a small region of phase space. For generic initial conditions after a sufficiently large
time the system forgets any perturbation that lasted for a finite time (and, in particular the
initial condition). However, as the system ages it moves slower and slower, and the time
needed to forget any perturbation grows with the time during which the perturbation acted.

In the context of our ‘aging experiment’ of the section 3, the questions are whether the
density response decays to zero for anytw (in which case the ergodicity-breaking is ‘weak’)
and whether the typical decay time depends ontw (‘aging’).

The results shown in figure 5 seem to point in the direction of weak ergodicity with
aging, but they are hardly conclusive. The decay is extremely slow, an effect that has
already been observed in the models with self-induced disorder that appeared recently in
the literature. For the related matrix model of [8] it is clear that the autocorrelation function
decays to zero but it does so extremely slowly. Fortw � 1 and tw/τ + tw = O(1):
C(τ + tw, tw) ∼ (tw/τ + tw)0.05.

In summary, the model has a high-pressure regime where:

(i) the exact low-pressure theory fails,
(ii) there is no evidence of geometric order,
(iii) there is evidence of waiting-time dependence in the aging experiments and hence of

non-equilibrium dynamics.

In this paper, we have presented a spherical mean-field model for hard spheres which
we have solved in the low-pressure phase. We believe that it can provide an analytical
description of such typical glassy phenomena as the viscosity increase around the glassy
transition and aging effects [17] but possibly not remnant dependences on the annealing
procedures.

In principle, one could attempt to solve the dynamics of this model in the high-pressure
phase in the same way as performed for mean-field spin-glasses [2]. A first step in this
direction could be to analyse the structure of phase space via the disordered model described
in section 2.2 (as in [5, 6]) or, directly with the method of [18].

Acknowledgment

LFC acknowledges support from the EU HCM grant ERB4001GT933731.

References

[1] Struik L C E 1978Physical Aging in Amorphous Polymers and Other Materials(Houston, TX: Elsevier)
Palmer R and Stein D 1989Lectures in the Science of Complexityed D L Stein (Santa Fe Institute, Addison-

Wesley)
Götze W 1991Liquids, Freezing and Glass Transitioned J P Hansen, D Levesque and J Zinn-Justin (Les

Houches Session LI) (Amsterdam: Elsevier)
Paul W and Baschnagel J 1994Monte Carlo and Molecular Dynamics Simulations in Polymer Scienceed K

Binder (New York: Oxford University Press) and references therein
Angell C A 1995 Science267 1924 and references therein



1358 L F Cugliandolo et al

[2] Cugliandolo L F and Kurchan J 1993Phys. Rev. Lett.71 173; 1994J. Phys. A: Math. Gen.27 5749; 1995
Phil. Mag. 71 501
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